

iPlanet Web Server,
Enterprise Edition 4.0

and
Stronghold 2.4.2

Performance Comparison
Analysis and Details

By Bruce Weiner
(PDF version, 184 KB)

February 7, 2000

Update to September 29,1999 version

White Paper
Contents

Executive Summary
Test Methodology

 WebBench 3.0
 SPICE Tests

Analysis
 Static
 Java Servlet and CGI
 JSP and SHTML
 E-Commerce

Test Details
 Sun Server
 Solaris, C, and Java
 iPlanet Web Server
 Stronghold
 Test Lab

Test Methodology
This section of the white paper describes the testing tool we used,
WebBench 3.0, and the special test programs we developed to
measure the calling efficiency of a server-side programming
interface (SPI) that dynamically generates HTML pages (for
example, Java servlets or C CGI programs). We use the term
server-side programming interface rather than application
programming interface (API) to distinguish that the programs we
refer to run on the server and not the client. The more generic API
term is ambiguous because programs written in Java and
JavaScript can run either on a client or on a server.

WebBench 3.0

WebBench tests the performance of a Web server by making HTTP
GET requests to it. WebBench increases the stress on a Web
server by increasing the number of client test systems (simply
called clients) that request URLs.

The number of clients at which peak Web server performance is
measured is a function of the performance of each WebBench
client, the Web server's performance, and the requests made.
Thus, it will take more slow clients than fast clients to make a
Web server reach its peak performance. This means that the
shape of a curve that plots Web server performance against the
number of clients participating in a test mix is not significant
before the peak performance point. However, the curve is
significant after the peak performance point because it shows how
well a Web server handles an overload.

WebBench can generate a heavy load on a Web
server. To do this in a way that makes
benchmarking economical, each WebBench client
sends an HTTP request to the Web server being
tested and waits for the reply. When it comes, the

Page 1 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

client immediately makes a new HTTP request. This
way of generating requests means that a few test
systems can simulate the load of hundreds of users.
You need to be careful, however, not to correlate
the number of WebBench client test systems with
the number of simultaneous users that a Web
server can support since WebBench does not
behave the way users do.

WebBench Metrics

WebBench produces a standard set of reports as a spreadsheet
workbook. The Summary Report provides two metrics as a
function of the number of clients participating in a test mix: the
number of HTTP GET requests/second a Web server can satisfy
and the corresponding throughput measured in bytes
sent/second.

The peak request rate is a useful measurement for comparing
Web servers and SPIs. A larger number of requests/second means
that one product can handle a larger load than the alternative.
However, the peak request rate is also a function of the average
size of a response. For example, a Web server responding only to
static requests for files averaging 14 KB might perform at 1,000
requests/second. However, if the average file size requested drops
to 500 bytes, that same Web server would respond at a
significantly higher rate, perhaps 2,500 requests/second. So when
we compare request rates we must be careful to look at the
average size of the responses.

The throughput measurements in the WebBench Summary Report
are useful for determining the average response size at each
request rate and for seeing what the peak number of bytes sent
across the network is. Because throughput is equal to the number
of requests/second times the average response size in bytes, you
can easily find the average response size given the request rate.

WebBench also provides a detailed Client Data Report showing a
great deal of information for each client in each test mix. An
important measurement is buried in this report. It is the average
latency. Latency is defined as the time from starting a connection
to a Web server to send a request until the last byte of the
response is received. Latency is especially interesting when
comparing the performance of alternative SPIs, which will be
discussed below.

WebBench Test Scenarios and Workloads

WebBench comes with several standard tests. Each test is divided
into two parts: a workload and a test scenario. Except for the
standard static test, Mindcraft either modified a WebBench test or
created a new one in order to do the tests for this white paper.
The following is a description of each test we ran (we have

Page 2 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

combined all of the test programs we used in a single tar file and
a zip file to make downloading easier):

l 100% Static Test
We used the standard WebBench static test. Its workload
(the set of URLs to request and their access frequencies)
uses 6,000 files totaling 60 MB. The average response size
is approximately 6250 bytes at peak performance. This is a
dynamic average based on the access frequencies for the
workload's files, which range in size from 223 bytes to 529
KB.

l 100% Java Servlet
We created this test to measure the performance of Java
servlets. All of the requests are made to the same Java
servlet, which simply returns 6250 bytes of HTML.

l 100% CGI
We created this test to measure the performance of CGI
programs written in C. All of the requests are made to the
same C CGI program, which simply returns 6250 bytes of
HTML.

l 100% Java Server Pages
Mindcraft created this test to measure the performance of
Java Server Pages (JSP). All of the requests are made to
one of 100 identical JSPs, each of which inserts today's date
into an HTML page and returns the page. For iWS, we used
a Java bean to get the date. For Stronghold/JServ, we made
a call to a Java date utility instead of a Java bean because
we did not have enough time to get the Java bean version
working before our deadline. However, the overhead
difference between the date utility and the bean should be
small compared with the overhead of using a JSP.

l 100% SHTML
Like the JSP test, the SHTML page inserts today's date into
6250 bytes of HTML and returns the updated HTML.

l E-Commerce Mix with Java Servlets
We started with the standard WebBench e -commerce test
and modified the workload to call our Java servlet instead of
the standard WebBench dynamic program. Otherwise, we
used the standard WebBench test. This e-commerce
workload includes 2% dynamic requests over SSL, 6% static
SSL requests, and 17% dynamic requests over a normal
connection.

l E-Commerce Mix with CGI
This e -commerce test is identical to the one using Java
servlets except that we replaced the servlet with our C CGI
program.

We used HTTP 1.0 without keepalives for all of our tests, just like
the standard WebBench 3.0 tests.

SPICE Tests

Page 3 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

The programs we developed test Server-side Programming
Interface Call Efficiency, or simply SPICE. We developed the
concept of SPICE tests:

l To provide an application-independent way to compare both
the dynamic-only and the mixed-static-dynamic
performance of Web servers using various SPIs and

l To determine the overhead associated with using a
particular SPI.

SPICE tests use applications that do the minimum processing
needed to return the same average number of bytes as a static
test will return. This means that SPICE tests can be used to make
fair comparisons between static-only, dynamic -only, and mixed
static-dynamic test scenarios because the response rate for the
SPICE programs are not artificially inflated because they return
less data than static requests.

A SPICE test essentially measures the minimum overhead for
using a particular SPI. A common alternative to SPICE tests is to
simulate a real-world application. One obvious problem with this
alternative is that the simulated application will almost certainly
behave differently than the one you want to deploy. While that is
also true with SPICE programs, they have an advantage over
simulated applications because they are simpler to implement,
smaller and use fewer resources. This simplicity and size
advantage lets you use SPICE programs to evaluate the true
overhead of using a SPI as well as making it much easier to
develop and run a test. Of course, if you have your own real
application available, you are much better off using it to make
your comparisons than an SPICE test.

SPICE Metrics

You can use almost any Web server performance measurement
tool to do SPICE tests as long as it supports executing a program
that does the minimum processing necessary to return the same
number of bytes as a static test. Of course, if your tool returns a
different average number of bytes than WebBench, you will have
to modify your SPICE programs to return the correct number of
bytes.

For SPICE tests, your tool needs to make two types
measurements: the number of requests/second the Web server
delivers and the average latency for requests. We call these the
SPICE request rate and the SPICE latency, respectively.

The SPICE request rate is useful for comparing Web server
performance under load. It incorporates the performance of the
server hardware, the server operating system, the Web server
software, and the SPI. It is based on aggregating the performance
of all of the requests from all of the client systems used in a test.
Comparing Web server performance based on SPICE request rate

Page 4 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

results in a server-centric comparison.

Evaluating Web server and SPI performance solely based on the
SPICE request rate can be misleading. The SPICE request rate will
always be the upper bound of your server's peak performance,
unless your application does almost nothing. You can improve the
validity of your evaluation by incorporating SPICE latency.

Using SPICE latency to evaluate Web server and SPI performance
helps you make decisions from a user perspective. You can think
of SPICE latency as answering the question, "How much latency
will I experience if I try to use a server with the current load on
it?" The answer to this question can affect how responsive a user
will find your Web application.

By looking at the SPICE latency on each client system, you can
see if a Web server is handling client requests unequally and if the
clients (your future users) will experience an unacceptably long
wait for a response. If either of these undesirable conditions is
true, the useful peak performance of the Web server is lower than
the peak performance you are measuring. You can determine the
useful peak performance by finding the maximum performance
point at which the Web server treats client requests equally and at
which it has an acceptable SPICE latency.

SPICE latency also is useful to estimate the response time a user
will experience from a lightly loaded server. Simply add the SPICE
latency to the time it takes your application to do its job and your
estimate is done. Unfortunately, this simple addition will not be
accurate for a heavily loaded server because your real application
will take up CPU time, memory and other resources thereby
increasing the actual latency.

We define SPICE efficiency as the ratio of a SPICE metric to the
same static test metric. In other words:

SPICE request efficiency =
 SPICE request rate/static request rate

SPICE latency efficiency =
 static latency/SPICE latency

SPICE efficiency is a measure of how much dynamic request
performance using a particular SPI will degrade from that of
static-only requests.

As you look at the SPICE efficiency metrics keep in mind that they
help you evaluate alternative SPIs for one Web server. If you want
to use them in a comparison of different Web servers then you
must evaluate SPICE efficiency in the context of the measured
SPICE request rate performance of each Web server. Otherwise,
you may come to incorrect conclusions.

Page 5 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Another way to use the SPICE efficiency ratios is to evaluate them
at the peak request rate and at the maximum load (in our case at
60 clients). Doing so, you can gain insight as to how the efficiency
of an SPI changes as load on the server increases.

Analysis
Now that you have an understanding of our test methodology, let
us look at each of the tests results to understand their
significance. The following analysis will group tests of comparable
features and SPI alternatives together to make it easier to
compare them.

Static Tests

The WebBench static test makes requests for HTML pages stored
in files without any additional processing. Its results represent an
upper limit on the performance of a Web server.

Figures 1 and 2 give the request rate and latency, respectively, for
100% static requests on a four-processor server. Table 1
summarizes the corresponding peak performance measurements
and shows how much faster iWS is than Stronghold for static
requests. Similarly, Figures 3 and 4 and Table 2 compare
performance for a one-processor server.

Table 1: Static Performance (4-CPU Server)

Table 2: Static Performance (1-CPU Server)

We will use the static test results to evaluate the efficiency of each
SPI.

Figure 1: iWS and Stronghold Static Request Rate Performance (4 CPUs)
(larger numbers are better)

Measurement iWS Stronghold Times iWS Is Faster

Static requests/second 2,759 2,282 1.21
Static Latency (ms) 8.3 15.4 1.86

Measurement iWS Stronghold Times iWS Is Faster

Static requests/second 1,153 714 1.61
Static Latency (ms) 30.9 55.7 1.80

Page 6 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Figure 2: iWS and Stronghold Static Latency Performance (4 CPUs)
(smaller numbers are better)

Figure 3: iWS and Stronghold Static Request Rate Performance (1 CPU)
(larger numbers are better)

Page 7 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Figure 4: iWS and Stronghold Static Latency Performance (1 CPU)
(smaller numbers are better)

Java Servlet and C CGI Tests

We used the Java servlet support provided in iWS and the Java 2
SDK. Stronghold does not include a Java servlet SPI so we used
Apache JServ for it because Stronghold is based on Apache.

We elected to do our CGI SPICE test with a program written in C
so that we could have the fastest possible CGI program. This
approach let us test the overhead in using a CGI program without
including other overheads such as that needed to start a Perl
program.

Page 8 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Four-Processor Results

Figures 5 and 6 show the SPICE request rate and SPICE latency
performance we measured on a four-processor server for tests
using 100% Java servlet and 100% CGI requests. Table 3
summarizes the corresponding peak performance measurements
on a four-processor server as well as how much faster iWS is than
Stronghold.

Table 3: SPICE Performance for Java Servlets and C CGI Programs (4 CPUs)

Figure 5: iWS and Stronghold Java Servlet and C CGI SPICE Request Rates (4 CPUs)
(larger numbers are better)

Figure 6: iWS and Stronghold Java Servlet and C CGI SPICE Latencies (4 CPUs)
(smaller numbers are better)

Measurement iWS Stronghold Times iWS Is Faster

SPICE Java Servlet
requests/second

1080 335 3.22

SPICE C CGI
requests/second 493 344 1.43

SPICE Java Servlet
Latency (ms) 18.1 71.3 3.94

SPICE C CGI
Latency (ms) 40.2 57.8 1.44

Page 9 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

The information in Table 3 is useful for comparing the
performance of both Web servers against each other and for
comparing the performance of both SPIs on one Web server. We
can see that on iWS the SPICE Java servlet is 2.2 times faster
than SPICE CGI program. However, for Stronghold the SPICE Java
servlet has a 3% lower request rate than the SPICE CGI program
while the Java servlet is 19% slower based on the SPICE latency.

If you look at the SPICE latency curves in Figure 6, you will see
that the difference between the Java servlet and the CGI program
increases substantially for iWS after the peak request rate. By
looking at the differences in SPICE latency as load increases, you
can see how much longer a Java servlet can run than a CGI
program and still be more responsive to a user. For Stronghold,
however, the speed benefits go to CGI programs.

Uniprocessor Results

Figures 7 and 8 show the SPICE request rate and SPICE latency
performance we measured on a uniprocessor server for tests
using 100% Java servlet and 100% CGI requests. Table 4
summarizes the corresponding peak performance measurements
as well as how much faster iWS is than Stronghold.

Table 4: SPICE Performance for Java Servlets and C CGI Programs (1 CPU)

Measurement iWS Stronghold Times iWS Is Faster

SPICE Java Servlet
requests/second 307 146 2.10

SPICE C CGI
requests/second 167 112 1.49

SPICE Java Servlet
Latency (ms) 10.0 60.3 6.03

Page 10 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Figure 7: iWS and Stronghold Java Servlet and C CGI SPICE Request Rates (1 CPU)
(larger numbers are better)

Figure 8: iWS and Stronghold Java Servlet and C CGI SPICE Latencies (1 CPU)
(smaller numbers are better)

The information in Table 4 shows that on a uniprocessor server
the iWS SPICE Java servlet can handle 1.8 times more requests
per second than the SPICE CGI program. Similarly, for Stronghold
the SPICE Java servlet request rate is 1.3 times faster than its
SPICE CGI program.

SPICE C CGI
Latency (ms) 56.5 163.0 2.88

Page 11 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

SPICE Efficiency

Another way to compare Java servlets and CGI programs is to
look at their SPICE efficiency. Tables 5 and 6 show the SPICE
efficiency at peak performance for iWS and Stronghold,
respectively.

Remember that SPICE latency efficiency is a ratio of the latency
for a static request over the latency for a request using a
particular SPI on the same Web server. You must be careful not to
compare SPICE latency efficiency between two Web servers
without the context of the measured SPICE request rate.
Otherwise, you may come to the wrong conclusion.

Take Stronghold's CGI SPICE latency efficiency as an example. It
is higher than the iWS SPICE latency efficiency. Does that mean
the same CGI program will support a larger number of requests
on Stronghold than on iWS? No. The SPICE request rates given in
Figure 7 show that using the same CGI program iWS outperforms
Stronghold by over 43% at peak performance for each.

Let's compare the SPICE latency efficiencies of each Web server
individually. For iWS, it is easy to see that a Java servlet will put
significantly less load on a server than a CGI program. For
Stronghold the situation is reversed; a CGI program will put less
load on a server than a Java servlet.

Table 5: iWS SPICE Efficiency at Peak Performance

Table 6: Stronghold SPICE Efficiency

 iWS SPICE Request Rate
Efficiency

iWS SPICE Latency
Efficiency

Uniprocessor Server

100% Java Servlet 26.6% 120.1%
100% CGI 14.5% 18.5%
Four-Processor Server

100% Java Servlet 39.2% 45.8%

100% CGI 17.9% 17.2%

 Stronghold SPICE Request
Rate Efficiency

Stronghold SPICE Latency
Efficiency

Uniprocessor Server

100% Java Servlet 20.4% 50.9%

100% CGI 15.6% 11.1%

Four-Processor Server

100% Java Servlet 14.7% 21.6%
100% CGI 15.1% 26.6%

Page 12 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Conclusions

l Java servlets on iWS will be more efficient and will allow you
to support more users on a loaded system than CGI
programs.

l CGI programs will yield better performance on Stronghold
than Java servlets on a loaded four-processor server.
However, Java servlets are more efficient than CGI
programs on a uniprocessor Stronghold server.

Java Server Pages and SHTML Tests

We have grouped the JSP and SHTML tests together because a
Web server must parse the entire file holding each. However, the
typical uses for JSP and SHTML are different. JSPs are used to
implement both large and small Web applications. SHTML files
typically are used to include a common set of HTML in Web pages.
While SHTML does have the ability to execute an arbitrary
program, that feature is rarely used because of security concerns
and because of a performance disadvantage compared to a CGI
program (the parsing of the SHTML file is what gives it the
disadvantage).

Given the different uses for JSP and SHTML, we recommend that
you evaluate the test results separately rather than using them to
choose which SPI you want to use.

The JSP and SHTML tests made 100% of their requests using the
respective SPI. We used the same SHTML page for the iWS and
Stronghold tests.

For the Stronghold JSP test, we looked at using the GNU Java
Server Pages software (gnujsp) that is recommended at the
Apache JServ Web site. However, the latest version of gnujsp
available at the time we did the tests required the Java 1.1 SDK
instead of the Java 1.2 SDK that both JServ 1.0 and iWS use. We
did not want any of the performance differences we might find to
be based on using two different versions of Java for the JSP tests.
Therefore, we decided not to test JSPs on Stronghold.

Four-Processor Results

Figures 9 and 10 show the SPICE request rate and SPICE latency
performance for the JSP and SHTML tests on a four-processor
server. Table 7 shows the corresponding peak performance
measurements as well as how much faster iWS is than
Stronghold.

Table 7: SPICE Performance for JSP and SHTML SPICE Programs (4 CPUs)

Measurement iWS Stronghold Times iWS Is Faster

Page 13 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Figure 9: iWS and Stronghold JSP and SHTML SPICE Request Rates (4 CPUs)
(larger numbers are better)

Figure 10: iWS and Stronghold JSP and SHTML SPICE Latencies (4 CPUs)
(smaller numbers are better)

SPICE JSP
requests/second

927 N/A N/A

SPICE SHTML
requests/second 2,153 1,631 1.32

SPICE JSP
Latency (ms) 21.2 N/A N/A

SPICE SHTML
Latency (ms)

10.8 29.1 2.69

Page 14 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Uniprocessor Results

Figures 11 and 12 show the SPICE request rate and SPICE latency
performance for the JSP and SHTML tests on a uniprocessor
server.

Figure 11: iWS and Stronghold JSP and SHTML SPICE Request Rates (1 CPU)
(larger numbers are better)

Figure 12: iWS and Stronghold JSP and SHTML SPICE Latencies (1 CPU)
(smaller numbers are better)

Table 8 shows the corresponding peak performance
measurements as well as how much faster iWS is than
Stronghold.

Page 15 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Table 8: SPICE Performance for JSP and SHTML SPICE Programs (1 CPU)

SPICE Efficiency

Table 9 shows the JSP and SHTML SPICE efficiency for iWS. Table
10 gives the Stronghold SHTML SPICE efficiency.

Table 9: iWS JSP and SHTML SPICE Efficiency

Table 10: Stronghold SHTML SPICE Efficiency

 Conclusions

l JSP SPICE performance on iWS is close to that for Java
servlets and almost twice that for CGI making it an
attractive to use for implementing Web applications.

l SHTML on iWS is an efficient way to include common HTML
on Web pages.

l Stronghold's SHTML provides its most efficient way to
include common HTML on Web pages.

Measurement iWS Stronghold Times iWS Is Faster

SPICE JSP
requests/second

288 N/A N/A

SPICE SHTML
requests/second 720 465 1.55

SPICE JSP
Latency (ms) 13.5 N/A N/A

SPICE SHTML
Latency (ms) 38.5 120.6 3.13

 iWS SPICE Request Rate
Efficiency

iWS SPICE Latency
Efficiency

Uniprocessor Server

100% JSP 25.0% 228.7%
100% SHTML 62.5% 80.1%
Four-Processor Server

100% JSP 33.6% 39.2%
100% SHTML 78.0% 77.2%

 Stronghold SPICE Request
Rate Efficiency

Stronghold SPICE Latency
Efficiency

Uniprocessor Server

100% SHTML 65.2% 46.2%
Four-Processor Server

100% SHTML 71.5% 52.9%

Page 16 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

E-Commerce Tests

The WebBench e-commerce tests are a mix of static and dynamic
requests using both normal and SSL connections. We substituted
our Java servlet and C CGI SPICE programs for the standard
WebBench NSAPI and CGI programs in the WebBench e -
commerce workload. This substitution lets us evaluate the
performance impact of the mix of dynamic requests and SSL
connections in the e-commerce tests as compared to the static
performance.

We could not get a valid run of the e-commerce tests on
Stronghold because of an SSL handshaking issue between
WebBench 3.0 and Stronghold. C2Net was quite supportive in
making suggestions for workarounds but we could not resolve the
issue in time for this report.

Figures 13 and 14 show the SPICE request rate and SPICE latency
performance for the e -commerce tests on a four-processor
server. Similarly, Figures 15 and 16 show the e-commerce SPICE
request rate and latency, respectively, for a uniprocessor server.

Figure 13: iWS Java Servlet and C CGI E-Commerce SPICE Request Rates (4 CPUs)
(larger numbers are better)

Figure 14: iWS Java Servlet and C CGI E-Commerce SPICE Latencies (4 CPUs)
(smaller numbers are better)

Page 17 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Figure 15: iWS Java Servlet and C CGI E-Commerce SPICE Request Rates (1 CPU)
(larger numbers are better)

Figure 16: iWS Java Servlet and C CGI E-Commerce SPICE Latencies (1 CPU)
(smaller numbers are better)

Page 18 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Table 11 summarizes the SPICE peak performance measurements.
We can see that Java servlets on both a uniprocessor and a four-
processor server are 1.2 times faster than CGI programs by
comparing the SPICE request rates.

Table 11: SPICE Performance for E-Commerce Java Servlets and C CGI Programs

Table 9 shows the iWS SPICE efficiencies for the e -commerce
tests.

Table 9: iWS E-Commerce SPICE Efficiency

Measurement iWS

Uniprocessor Server

SPICE e-commerce Java servlet
requests/second

406

SPICE e-commerce CGI requests/second 329
SPICE e-commerce Java servlet Latency (ms) 86.1
SPICE e-commerce CGI Latency (ms) 62.3
Four-Processor Server

SPICE e-commerce Java servlet
requests/second

1,420

SPICE e-commerce CGI requests/second 1,164
SPICE e-commerce Java servlet Latency (ms) 25.1
SPICE e-commerce CGI Latency (ms) 30.7

 iWS SPICE Request Rate
Efficiency

iWS SPICE Latency
Efficiency

Uniprocessor Server

E-commerce

Page 19 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Conclusion

l For an application with a mix of static and dynamic requests
over normal and SSL connections that approximate those in
the WebBench e-commerce test, iWS Java servlets will be
more efficient and will allow you to support more users on a
loaded system than CGI programs.

l SSL processing consumes much of the available CPU power
thereby reducing the performance advantage servlets have
over CGI programs on iWS.

Test Details

Sun Server

We used the same Sun Enterprise 450 server for all of the test
reported here. Table 10 shows the system configuration. We used
the psradm command to disable three processors for the
uniprocessor tests.

Table 10: Sun Enterprise 450 Configuration

Solaris 2.6 Operating System, C Compiler, and Java

We ran all tests using the Solaris 2.6 operating system. We made
the following Solaris configuration and tuning changes:

E-commerce
(Servlet) 35.2% 35.9%

E-commerce (CGI) 28.6% 49.6%
Four-Processor Server

E-commerce
(Servlet) 51.5% 33.1%

E-commerce (CGI) 42.2% 27.0%

Feature Configuration

CPU 4 x 400 MHz UltraSPARC-II
Cache: 16 -KB I-cache, 16-KB D-cache per processor and 4-MB
external cache per processor

RAM 2 GB 60ns ECC

Disks OS Disk, Web Data Disk, and Web Log Disks:

One disk each - 9 GB Seagate Cheetah, Model
ST39102LC, 10,000 RPM

Networks 2 x Sun Gigabit Ethernet Network Interface Cards (SX fiber)

Page 20 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

1. We added the following tunes at the end of
the /etc/system file:

o set rlim_fd_max=8192

o set rlim_fd_cur=8192

o set sq_max_size=0

2. We created a file named S95mctunes and put it in
the /etc/rc2.d directory so that our network tunes would be
reinstalled whenever we rebooted the system.

3. We applied all of the patches recommended for iWS in its
installation instructions.

We used the Sun WorkShop Professional C compiler, version 4.2
for compiling all C programs, including recompiling Stronghold.
We also applied all of the latest patches for this C compiler.

We used the Java 2 SDK, also known as Java 1.2, for all iWS and
Stronghold Java requirements.

iPlanet Web Server, Enterprise Edition 4.0

We have provided the magnus.conf, obj.conf, jvm12.conf ,
nsfc.conf configuration files we used for tests described in this
white paper.

We only ran an iWS listening to the SSL port for those tests
requiring SSL. We used a 1024-bit certificate from Thawte for the
SSL tests.

Stronghold 2.4.2 and JServe

We have provided the httpd.conf configuration file we used for
Stronghold 2.4.2. Note, we commented all of the SSL-related
directives at the end of the file for those tests that did not need
SSL. We used a 1024-bit certificate from Thawte for the SSL tests.

We were able to improve Stronghold's performance by 43% over
the executable version that C2Net ships. To do this, we re-
compiled Stronghold 2.4.2 using the following EXTRA_CFLAGS
setting, which is in the src/Configuration file:

EXTRA_CFLAGS=-DBUFFERED_LOGS -DUSE_PTHREAD_SERIALIZED_ACCEPT

Before we could re-compile Stronghold we had to apply a patch to
fix a problem with the compilation script.

Test Lab

Page 21 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Mindcraft's test lab consists of three types of systems for a total of
60 clients:

A. 12 Type A clients configured as specified in Table 11.
B. 12 Type B clients configured as specified in Table 12.
C. 36 Type C clients configured as specified in Table 13.

All of the clients were connected to an HP ProCurve 4000M switch
via a full-duplex 100Base-TX link. The Sun Enterprise 450 was
connected to the ProCurve 4000M via two full -duplex Gigabit
Ethernet links. We used an independent system to be the
WebBench controller. This controller was also connected to the
ProCurve 4000M switch.

Table 11: Type A Client Configuration

Table 12: Type B Client Configuration

Table 11: Type C Client Configuration

Type A Clients

System

CPU 200 MHz Pentium ® Pro; Intel VS440FX
motherboard

Cache L1: 16 KB (8KB I + 8KB D)
L2: 256 KB

RAM 64 MB EDO
Disk 2GB EIDE

Operating
System Windows NT Server 4.0, Service Pack 5 installed

Network 1 x 100Base-TX 3Com 3C905-TX Network Interface Card

Type B Clients

System

CPU 266 MHz Pentium ® II; Intel AL440LX
motherboard

Cache L1: 16 KB (8KB I + 8KB D)
L2: 256 KB

RAM 64 MB EDO
Disk 2GB EIDE

Operating
System Windows NT Server 4.0, Service Pack 5 installed

Network 1 x 100Base-TX Intel EtherExpress Pro/100+ LAN Adapter

Type C Clients

System

CPU 466 MHz Celeron ®; Abit BM6 motherboard
Cache L2: 128 KB
RAM 128 MB Kingston ECC SDRAM, 100 MHz

Page 22 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

Disk 4GB ATA/66

Operating
System Windows NT Server 4.0, Service Pack 5 installed

Network 1 x 100Base-TX Intel EtherExpress Pro/100+ Management
Adapter

Changes

l Added test results for 1-CPU configurations

NOTICE:

The information in this publication is subject to change without notice.

MINDCRAFT, INC. SHALL NOT BE LIABLE FOR ERRORS OR
OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL.

This publication does not constitute an endorsement of the product or products that
were tested. This test is not a determination of product quality or correctness, nor does
it ensure compliance with any federal, state or local requirements.

Mindcraft is a registered trademark of Mindcraft, Inc.

The Mindcraft tests discussed herein were performed without independent verification by Ziff -Davis
and Ziff-Davis makes no representations or warranties as to the results of the tests.

Product and corporate names mentioned herein are trademarks and/or registered
trademarks of their respective companies.

 Copyright © 1999-2000. Mindcraft, Inc. All rights reserved.
Mindcraft is a registered trademark of Mindcraft, Inc.
Product and corporate names mentioned herein are trademarks and/or registered trademarks of their respective owners.
For more information, contact us at: info@mindcraft.com
Phone: +1 (408) 395-2404
Fax: +1 (408) 395-6324

Page 23 of 23iPlanet Web Server, Enterprise Edition 4.0 Analysis and Details

2/7/2000http://www.mindcraft.com/whitepapers/iws/iwsee4-sh242-p2.html

