![]() |
![]()
Compaq ProLiant 5000 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Executive SummaryThis Certified Performance Report is for the Compaq ProLiant 5000 running the Windows NT Server 4.0 operating system and the Netscape Enterprise Server 2.0. It covers one, two, and four processor configurations of the ProLiant 5000. The WebStone 2.0.1 benchmark was used to test the system. The maximum number of connections per second attained for the system is shown in Figure 1 and the peak throughput in Mbits per second is shown in Figure 2. A table summarizing the peak performance follows Figure 2.
IntroductionThis Performance Report was commissioned by Compaq Computer Corporation to demonstrate the performance of their ProLiant 5000 server and to allow the reader to compare the performance of the ProLiant 5000 with that of servers from other vendors. Two 100Base-TX network interfaces were used on the server in order to allow enough throughput to show the server's capabilities. In addition, the WebStone 2.0.1 run rules were extended to include runs with up to 600 client processes. Minor changes were made to the WebStone scripts to allow us to run client systems against two different network interfaces and to accommodate the different command syntax of the webclient program on the Windows NT client systems. WebStone code changes are given in Appendix 1. Mindcraft's CertificationMindcraft, Inc. conducted the performance tests described in this report between October 25 and November 6, 1996, in our laboratory in Palo Alto, California. Mindcraft used the WebStone 2.0.1 test suite to measure performance. Mindcraft certifies that the results reported herein fairly represent the performance of Compaq's ProLiant 5000 computer running Netscape's Enterprise Server 2.0 under Microsoft's Windows NT Server 4.0 operating system as measured by the WebStone 2.0.1 test suite. Our test results should be reproducible by others who use the same test lab configuration as well as the computer and software configurations and modifications documented in this report. Performance AnalysisThis analysis is based on the complete WebStone benchmark results for the ProLiant 5000. We did not test a four processor configuration of the ProLiant 5000 for HTML performance because we were essentially saturating the network with two processors and did not expect to see significantly better performance from four processors. The WebStone 2.0.1 HTML benchmark stresses a system's networking ability in addition to other aspects of server performance. The best way to see if there is unused capacity on a server computer running WebStone is to look at the CPU utilization. It was 95% to 100% for the HTML tests when the peak performance was reached. So the tests did fully utilize the system. A ProLiant 5000 under Windows NT Server 4.0 is able to drive its network interfaces close to capacity, as shown in Figures 3, 4, and 5 below. The WebStone 2.0.1 CGI and NSAPI tests are CPU intensive because they compute random characters to put on the Web pages they return. As expected, the CPU utilization was 100% for the CGI and NSAPI tests when the peak performance was reached. Because the CPUs are busy computing Web pages, the CGI and NSAPI tests show significantly lower connection rates and throughput than the HTML test. From looking at the peak performance data, it is clear that the NSAPI interface is four to six times faster than the CGI interface.
For the HTML benchmark, the maximum throughput observed in our testing of a two processor configuration of a ProLiant 5000 was over 136 Mbits/second, which is close to the maximum that can be expected for two 100 Mbits/second half-duplex networks. With Netscape's Enterprise Server, network bandwidth and associated operating system overhead appeared to be the limiting HTML performance factor for the configuration tested, not the Web server itself. The WebStone load that a server computer can support depends on four primary factors:
There is a strong correlation between the number of connections/second a server can provide and the throughput (in Mbits/second) it exhibits. This can be seen by comparing the connections/second per client in Figures 6, 7 and 8 below with the throughput in Figures 3, 4, and 5.
Test Procedures and Test Suite ConfigurationTest ProceduresMindcraft followed the standard WebStone 2.0.1 run rules with the following extensions:
The following basic set of procedures was used for performing these tests:
Test Suite ConfigurationTesting was controlled from a Ross Technology SPARCplug system running Solaris 2.5.1 and a webmaster binary compiled on that system using gcc. The webclient program was compiled on a Windows NT Server 4.0 system using Microsoft Visual C++ version 4.2. Minor changes were made to the WebStone scripts to allow us to run client systems against two different network interfaces and to accommodate the different command syntax of the webclient program on the Windows NT client systems. WebStone code changes are given in Appendix 1. Test DataThe data files used for the static HTML testing were the default "Silicon Surf" fileset, distributed as filelist.standard with the WebStone 2.0.1 benchmark. This static HTML fileset was designed to represent a real-world server load. It was designed based on analysis of the access logs of Silicon Graphics, Inc.'s external Web site, http://www.sgi.com. Netscape's analysis of logs from other commercial sites indicated that Silicon Surf access patterns were fairly typical for the Web when they were designed. The Silicon Surf model targets the following characteristics:
Configuration of the System Tested
Test Lab ConfigurationIn order to cause the Netscape Enterprise Server to use all available CPU cycles on the server computer system, we used four WebStone client systems. A fifth system served as the Webmaster, controlling the WebStone driver. The test lab network configuration used for this work is shown below: ![]()
The tests described in this report were performed on isolated LANs that were quiescent except for the test traffic. Glossary
Appendix 1: Changes to Webstone 2.0.1 SourceThe following output from diff illustrates our changes: Changes to bin/runbench: Comment out rcp and rsh commands directed at the NT hosts, and change the generated webclient configuration file to specify the server name. This uses a facility that's built into the software, but isn't used by the standard version of the WebStone run scripts. 17c17 < [ -n "$DEBUG" ] && set +x > [ -n "$DEBUG" ] && set -x 87,90c87,90 < for i in $CLIENTS < do < $RCP $WEBSTONEROOT/bin/webclient $i:$TMPDIR #/usr/local/bin < done > #NT: for i in $CLIENTS > #NT: do > #NT: $RCP $WEBSTONEROOT/bin/webclient $i:$TMPDIR #/usr/local/bin > #NT: done 101c101 < TIMESTAMP=`date +"%y%m%d_11/06/96M"` > TIMESTAMP=`date +"%y%m%d_%H%M"` 107,110c107,110 < for client in $CLIENTS < do < $RSH $client "rm /tmp/webstone-debug*" > /dev/null 2>&1 < done > #NT: for client in $CLIENTS > #NT: do > #NT: $RSH $client "rm /tmp/webstone-debug*" > /dev/null 2>&1 > #NT: done 119a120,121 > CLIENTNET=`expr $i : "(.*)\..*"` > SERVERNAME=$[Macro error: j6- dagger]] .$[Macro error: j6- dagger]] 122,123c124,125 < echo "$i $CLIENTACCOUNT $CLIENTPASSWORD `expr $CLIENTSPERHOST + 1`" < >> $LOGDIR/config > echo "$i $CLIENTACCOUNT $CLIENTPASSWORD `expr $CLIENTSPERHOST + 1` > $SERVERNAME" >> $LOGDIR/config 126c128 < echo "$i $CLIENTACCOUNT $CLIENTPASSWORD $CLIENTSPERHOST" --- > echo "$i $CLIENTACCOUNT $CLIENTPASSWORD $CLIENTSPERHOST $SERVERNAME" 135,140c137,142 < for i in $CLIENTS localhost < do < $RSH $i "rm -f $TMPDIR/config $TMPDIR/`basename $FILELIST`" < $RCP $LOGDIR/config $i:$TMPDIR/config < $RCP $LOGDIR/`basename $FILELIST` $i:$TMPDIR/filelist < done > #NT: for i in $CLIENTS localhost > #NT: do > #NT: $RSH $i "rm -f $TMPDIR/config $TMPDIR/`basename $FILELIST`" > #NT: $RCP $LOGDIR/config $i:$TMPDIR/config > #NT: $RCP $LOGDIR/`basename $FILELIST` $i:$TMPDIR/filelist > #NT: done 145,149c147,151 < $RSH $SERVER "$SERVERINFO" > $LOGDIR/hardware.$SERVER 2>&1 < for i in $CLIENTS < do < $RSH $i "$CLIENTINFO" > $LOGDIR/hardware.$i 2>&1 < done > #NT: $RSH $SERVER "$SERVERINFO" > $LOGDIR/hardware.$SERVER 2>&1 > #NT: for i in $CLIENTS > #NT: do > #NT: $RSH $i "$CLIENTINFO" > $LOGDIR/hardware.$i 2>&1 > #NT: done 151,156c153,156 < set -x < for i in $OSTUNINGFILES $WEBSERVERTUNINGFILES < do < $RCP $SERVER:$i $LOGDIR < done < set +x > #NT: for i in $OSTUNINGFILES $WEBSERVERTUNINGFILES > #NT: do > #NT: $RCP $SERVER:$i $LOGDIR > #NT: done 162,164c162,166 < CMD="$WEBSTONEROOT/bin/webmaster -v -u $TMPDIR/filelist" < CMD=$CMD" -f $TMPDIR/config -t $TIMEPERRUN" < [ -n "$SERVER" ] && CMD=$CMD" -w $SERVER" > #GREG: bug fix: changed $TMPDIR below to $LOGDIR > CMD="$WEBSTONEROOT/bin/webmaster -v -W -u $LOGDIR/filelist" > #GREG: bug fix: changed $TMPDIR below to $LOGDIR > CMD=$CMD" -f $LOGDIR/config -t $TIMEPERRUN" > #GREG: [ -n "$SERVER" ] && CMD=$CMD" -w $SERVER" Changes to sysdep.h: Emit an NT-style command line and to fix a C portability problem. 48c48 < #error NT gettimeofday() doesn't support USE_TIMEZONE (yet) > #error NT gettimeofday() does not support USE_TIMEZONE (yet) 87a88 > #ifdef SOLARIS_CLIENT 88a90,92 > #else > #define PROGPATH "D:\webstone2.0\webclient.exe" /* "/usr/local/bin/webclient" */ > #endif /* SOLARIS_CLIENT */ Changes to webmaster.c: Emit an NT-style command line, and fix a bug that shows up on Solaris. 539a540 > #ifdef SOLARIS_CLIENT 550a552 > #endif /* SOLARIS_CLIENT */ 586a589 > #ifdef SOLARIS_CLIENT 588a592,594 > #else > strcat(commandline, " -u d:\WebStone2.0\filelist"); > #endif /* SOLARIS_CLIENT */ 1395a1402 > 1398a1406,1408 > size_t count; > char **sptr, **dptr; > struct in_addr *iptr; 1406,1407d1415 < dest->h_addr_list = src->h_addr_list; < } 1408a1417,1446 > /* > * ADDED: by Greg Burrell of Mindcraft Inc. 10/22/96 > * PROBLEM: we can't just do the assignment: > * > * dest->h_addr_list = src->h_addr_list > * > * because those are just pointers and the memory pointed to > * may get overwritten during the next gethostbyname() call. > * In fact, that happens on Solaris 2.5 > * > * FIX: Make a copy of the h_addr_list of a hostent structure. > * h_addr_list is really an array of pointers. Each pointer > * points to a structure of type in_addr. So, we allocate space > * for the structures and then allocate space for the array of > * pointers. Then we fill in the structures and set up the array > * of pointers. > */ > for(count = 0, sptr = src->h_addr_list; *sptr != NULL; sptr++, count++); > if ((dest->h_addr_list = malloc(count + 1)) == NULL) > return 0; > if ((iptr = malloc(count * sizeof(struct in_addr))) == NULL) > return 0; > for (sptr = src->h_addr_list, dptr = dest->h_addr_list; > *sptr != NULL; sptr++, dptr++, iptr++) [Macro error: j6- dagger]] > *dptr = NULL; > return 1; > } Appendix 2: Operating System ConfigurationSystem Identification:From the winmsd program: Microsoft® Windows NT® Version 4.0 (Build 1381) tcpip.sys from Microsoft's December 1996 update for Windows NT was installed. Run Time ParametersFrom Registry Editor: HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services InetInfo Parameters ListenBacklog: 1024 HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services Tcpip Parameters TcpTimedWaitDelay: 1 HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services cpqnf30 Parameters MaxReceives: 500 It was probably not necessary to change the TcpTimedWait Delay parameter from its default value. We have done some trial WebStone runs with this parameter clear, and the results are within the range of run-to-run variability we observed with the parameter set. Active Services:Netscape Enterprise Server https-192.168.1.9 Netscape Enterprise Server https-192.168.2.9 Alerter Event Log License Logging RPC Service Server Spooler All other services were disabled. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
Copyright © 1997-98. Mindcraft, Inc. All rights reserved. Mindcraft is a registered trademark of Mindcraft, Inc. For more information, contact us at: info@mindcraft.com Phone: +1 (408) 395-2404 Fax: +1 (408) 395-6324 |